
Discussion Papers in Economics 
 

 
Quality of Schooling: Child Quantity-Quality Tradeoff, 

Technological Progress and Economic Growth 
 

Swati Saini & Meeta Keswani Mehra 
 

Discussion Paper 18-06 
 

 
 
 

Centre for International Trade and Development 
 

School of International Studies 
 

Jawaharlal Nehru University 
 

India 
 

* 
 
 



Quality of Schooling: Child Quantity-Quality Tradeoff,

Technological Progress and Economic Growth

Swati Saini∗ Meeta Keswani Mehra†

Abstract

An overlapping generations version of an R&D-based growth model ‘a la Diamond

(1965) and Jones (1995) is built to examine how improvement in quality of schooling

impact technical progress and long- run economic growth of an economy by influ-

encing fertility and education decisions at household level. The results indicate that

improvement in schooling quality triggers a child quantity-quality trade-off at house-

hold level when quality of schooling exceeds an endogenously determined threshold.

At the household level, parents invest more in education of children and have lesser

number of children in response to improvement in quality of schooling. This micro-level

tradeoff has two opposing effects on aggregate human capital accumulation at macro

level. Higher investment in education of a child stimulates the accumulation of human

capital which fosters technical progress but the simultaneous decline in fertility rate

reduces the total factor productivity growth and economic growth by contracting the

pool of available researchers. The first effect prevails over latter only when quality of

schooling is higher than the threshold.

Keywords— fertility, quality of schooling, economic growth, demographic transition

∗Ph.D. Scholar, Centre for International Trade and Development (CITD), School of International Studies

(SIS), Jawaharlal Nehru University (JNU), New Delhi.Email:swatisaini1128@gmail.com.
†Professor of Economics, Centre for International Trade and Development,Jawaharlal Nehru University

(JNU), New Delhi

1



1 Introduction

Human capital as a potential driver of technical change has, consequently, emerged as an important

determinant of economic growth in the endogenous growth theory literature. The policy emphasis

on schooling in the development strategies of most countries mirrors the emphasis of research on the

role of human capital in determining growth and development pattern of economies. Developing

countries have focussed on improving the access to education so that their stock of human capital

can be built up which, in turn, can be fruitfully employed to speed up the process of technological

progress and diffusion and, therefore, spur economic growth. As per the estimates of Barro and Lee

(2013), the share of population without any formal schooling in developing countries has declined

from 54.6 percent in 1960 to approximately 17.4 percent in 2010. However, merely expanding

access to education does not ensure that children actually learn in schools. The learning outcomes in

schools closely hinge upon the quality of schooling, which has been given inadequate attention in the

development policy paradigms of most developing countries until now. But recently, development

policy paradigms of most countries are gradually shifting towards improving learning quality in

schools than merely expanding access to education. This policy paradigm shift in education policy

is also reflected in the post-2015 development agenda. Imparting quality education features as the

fourth Sustainable Development Goal set by the United Nations. This shift is motivated by two

factors.

First, there is growing evidence that quality of schooling matters more for economic growth.

Hanushek and Kimko (2000) and Hanushek and Woessmann (2012) provide an extensive discussion

of how scores from cognitive skill tests can be used to measure the quality of human capital and its

effects on economic growth. They use data from six voluntary international tests of mathematics

and science to build a measure of quality of education. They find that the estimate of human capital

quality has a significant positive impact on growth. Several studies have since found very similar

results (Bosworth & Collins, 2003; Ciccone & Papaioannou, 2009; Islam, Ang, & Madsen, 2014a).

Second, poor quality of schooling remains a dismal reality in developing countries. UNESCO (2014)

reports that 250 million children are functionally illiterate and innumerate despite 50 percent of

them having spent at least four years in school. According to the Annual Status of Education

Report (ASER) 2017 survey titled “Beyond Basics”, based on an assessment of 30,000 children in
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28 districts of 24 states in India, only 43 percent of 14-18-year-olds could do simple division after

eight years of schooling. Less than half of the children surveyed could not add weights in kilograms

and more than 40 percent could not tell hours and minutes from a clock. 36 percent of the children

could not answer the capital of India correctly. This scenario is staggering and reveals a gloomy

picture about the learning outcomes of children in Indian schools. Similarly, Glewwe, Ilias, and

Kremer (2010) report that teachers from rural schools in Kenya were absent 20 percent of the

time; while, in Zambia and Pakistan, teachers were absent, respectively, 18 percent and 10 percent

of the time (J. Das, Dercon, Habyarimana, & Krishnan, 2004; Reimers, 1993). This implies that

poor quality of schooling significantly distorts the learning outcomes in schools, which in turn, has

far-reaching implications on growth prospects of developing countries.

In this paper, we build an overlapping generations version of an R&D-based growth model

á la Diamond (1965) and Jones (1995) to analyze how improvement in quality of schooling and

the associated changes in fertility and education decisions at the micro level influence the long-

run economic growth of an economy. We characterize two types of economies. The first type

is an innovation economy where technological improvements occur by innovating upon the local

technology frontier. The second type is an imitation economy where technological progress occurs

by imitating existing foreign technologies. We find that the quality of schooling triggers a child

quantity-quality trade-off at the micro level when quality of schooling surpasses an endogenously

determined threshold under both the technology regimes. When quality of schooling surpasses the

threshold, parents invest in the education of their children and bear lesser number of children.

However, parents focus on maximizing fertility and do not educate their children when quality of

schooling is less than the threshold. This micro-level trade-off generates two types of effects on

economic growth at the macro level - a growth-stimulating effect and a growth-impeding effect.

Higher investment in the education of a child stimulates the accumulation of human capital, which

fosters technical progress but the simultaneous decline in fertility rate reduces the total factor

productivity growth and economic growth by contracting the pool of available researchers. Our

results show that the former effect dominates over latter only when the quality of schooling is higher

than the threshold, and the economy is on a self-sustaining growth path. Alternatively, when the

quality of schooling is less than the threshold, parents do not educate their children and focus,

instead on maximizing fertility. In such a scenario, economic growth is solely driven by quantity
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of human capital. Higher fertility rate leads to higher population growth, which propels economic

growth rate under both innovation and imitation regimes.

Our theoretical result that improvement in quality of schooling leads to higher investment in

education when quality of schooling surpasses an endogenously determined threshold is consistent

with recent theoretical and empirical findings. In a theoretical context, Castelló-Climent and

Hidalgo-Cabrillana (2012) study the effects of exogenously determined school quality on student

choices of education and its consequent impact on economic growth. They find that high-quality

education increases the returns to schooling, and hence, the incentives to accumulate human capital.

They also emprically validate their theoretical result by carrying out a cross-country analysis which

reveals that quality of education has a positive effect on enrollment rates in secondary schooling

only when quality of schooling is sufficiently high. Similarly, Hanushek, Lavy, and Hitomi (2008)

find that lower quality of schooling leads to higher dropout rates in case of Egyptian primary

schools.

Our work is closely related to two broad strands of literature. First, there is theoretical litera-

ture that analyzes the linkages between quality of schooling and economic growth. Many existing

studies (M. Das & Guha, 2012; Gilpin & Kaganovich, 2012; Tamura, 2001) on quality of school-

ing and economic growth focus on explaining how determinants of quality of schooling such as

teacher-student ratio and teacher quality together impact the learning process, and the consequent

human capital formation and, therefore, economic growth. M. Das and Guha (2012) consider an

economy with heterogenous agents. In their framework, two teacher specific inputs (teacher qual-

ity and teacher quantity) and two student-specific inputs (ability and effort) enter the production

function of human capital. The human capital accumulation and economic growth depends upon

this complex interaction between these two types of schooling inputs. Similar to M. Das and Guha

(2012), Gilpin and Kaganovich (2012) analyze a similar quantity-quality trade-off of teachers in a

two-tiered schooling system: basic and advanced (college level). Their results show that the hiring

costs of teachers increase over time leading to a shift of the optimal trade-off betwen quality and

quantity in favor of the latter in the process of endogenous growth. Castelló-Climent and Hidalgo-

Cabrillana (2012) develop a theory of human capital investment to study the effects of exogenously

determined schooling quality on student choices of education, and to understand its effect on eco-

nomic growth. High-quality education increases the returns to schooling, and hence the incentives
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to accumulate human capital. This is caused by two different channels: higher quality incentivizes

people to acquire education (extensive margin), and once individuals decide to participate in higher

education, higher-quality increases the investment made per individual (intensive margin). These

two channels, in turn, lead to economic growth.

However, most of these studies assume exogenously determined population growth and do not

consider technical progress in their models. Consequently, these studies are unable to analyze the

impact of schooling quality and the resulting demographic change on R&D activities, which are

a major determinant of technological development in the present world. We improve upon these

papers by endogenizing both - population growth and technical change. Specifically, our work

focuses on interactions between quality of schooling and demographic change, which influence total

factor productivity growth and, therefore, growth prospects of an economy.

Second, our research relates to the literature linking R&D based growth with endogenous

fertility and education decisions (Hashimoto & Tabata, 2016; Strulik, 2005; Strulik, Prettner, &

Prskawetz, 2013). Strulik (2005) introduce human capital accumulation in a R&D-based growth

model where R&D activity is driven by expansion in variety and quality of intermediate inputs.

He finds that economic growth depends positively on the rate of human capital accumulation and

positively or negatively on population growth depending on the degree of altruism towards fu-

ture generations. Economic growth and population growth are negatively correlated if households

maximize utility derived from their own per capita consumption. Alternatively, economic growth

and population growth are positively correlated if households maximize utility derived from the

consumption of their dynasty. Hashimoto and Tabata (2016) examine how increase in the old-age

survival rate influences fertility and education decisions at the micro level and its consequent impact

on economic growth at the macro level. They show that an increase in life expectancy encourages

young individuals to invest more in their education and bear fewer children at the household level.

Further, they show that in economies in which life expectancy is sufficiently low, this micro-level

trade-off yields a higher rate of human capital accumulation and, therefore, higher rate of technical

progress and economic growth at the macro level. However, in economies in which life expectancy

is sufficiently high, this micro-level trade-off leads to greater decline in population growth rate

which impedes the increase in the supply of researchers and, thereby, reduces the rate of technical

progress and economic growth of the economy.
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In particular, this work is closely related to Strulik et al. (2013). Strulik et al. (2013) analyze

child quantity-quality trade-off by integrating R&D based innovations into a unified growth frame-

work. They explain why high levels of total factor productivity and economic growth in modern

economies are associated with low or negative population growth by considering a child quantity-

quality trade-off at the household level. In their theoretical model, decisions related to fertility and

education are endogenously determined by households. A substitution of child quantity, n, by child

quality (i.e. expenditure on education), e, that keeps total child expenditure, e.n, constant sets free

parental time, which can be used to earn extra income. The additional income is partly spent on

education, such that the overall child expenditure rises more proportionately than child quantity

falls. On the macro side of the economy, this trade-off means that the magnitude by which human

capital per person, h rises is larger than the magnitude by which number of persons, L, falls. The

net impact of this micro level trade-off is that the total available human capital h.L increases at

the macro level. Given that human capital is the driving force for R&D, this entails a higher R&D

output and higher R&D-based growth.

Although our modelling framework is similar to Strulik et al. (2013), we go beyond Strulik et

al. (2013) in atleast three respects. First, the focus of our research is not on formulating a unified

growth theory which explains the entire transition of an economy from Malthusian stagnation to

modern growth. Instead, the purpose of this work is to build a growth model that explains the

inter-linkages between quality of schooling, demographic change and technological improvements

in a modern economy. Therefore, this thesis focusses on characterizing two types of economies

with low and high quality of schooling and examines the corresponding drivers of economic growth

in these two types of economies. To the best of our knowledge, this issue is yet to be explicitly

discussed in the literature. Second, our study examines the impact of a demographic transition

triggered by improvement in quality of schooling. Strulik et al. (2013) focus on impact of a de-

mographic transition induced by technological progress. Third, we extend Strulik et al. (2013) by

considering two distinct channels of technological improvement - innovation and imitation. Under

the innovation regime, technological improvements occur by innovating on local technology fron-

tier whereas under imitation regime, technological progress occurs by imitating existing foreign

technologies. In this respect as well, this work is an improvement over existing research in this

area.
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This paper is organized as follows. Section 2 discusses the basic structure of the model. Section

3 contains the key analytical results for a decentralized economy, which provide the key propositions

of this study. Section 4 concludes.

2 The Model and Equilibrium Solutions

2.1 The Economic Environment

We consider a model economy populated by overlapping generations of people who live for two

periods: adulthood and old age. Time is discrete and goes from 0 to ∞. During childhood, which

is not modeled explicitly, individuals are reared and educated by their parents. All the decisions

are made at the beginning of adulthood. Adults are identical in all aspects. They inelastically

supply their skills in the labor market. Adults care about consumption of a homogeneous final

good, number and human capital level of their children. During old age, individuals consume their

savings plus interest earned on these. Abstracting from gender differences, each household has a

single parent. For avoiding the indivisiblity problem, we assume that children are in continuous

number. All individuals survive up to adulthood. The education of current period’s children

determines human capital endowment of next period’s adult generation. Akin to Castelló-Climent

and Hidalgo-Cabrillana (2012), human capital accumulation function depends on an exogenously

given quality of education system, parental investment in education and human capital of parent.

Parental investment in education is a fraction of income spent on education of each child.

The production structure of the economy closely follows Romer (1990) and Jones (1995). The

economy consists of three sectors: final goods sector, intermediate goods sector and R&D sector.

R&D sector employs human capital to produce blueprints of intermediate goods. Intermediate

goods are produced by monopolistic firms using physical capital and intermediate good-specific

blueprint. Final goods sector produces the good competitively using land and variety of interme-

diate goods as inputs.
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2.2 Individuals

Individuals derive utility from c1,t, their own consumption (of the final good) during adulthood;

c2,t+1, their own consumption during old age; nt, number of children and ht+1, human capital

of children. Parents’ motivation to invest in human capital of children by spending on children’s

education is driven by a “warm glow” of giving (Andreoni, 1989) or preference for having “higher-

quality” children (Becker, 1960). The lifetime expected utility of individuals in generation t is given

by:

ut = log c1,t + β1 log c2,t+1 + β2 log(ht+1nt), (1)

where positive weights β1 and β2 measure the importance of future consumption and child quantity

and quality relative to current consumption in the utility function. Alternatively, following De la

Croix and Doepke (2004), β2 can be interpreted as an altruism factor.

An adult’s human capital is denoted by ht and the wage per unit of human capital is wt. Young

adults spend their income on current consumption, savings for old-age consumption and child’s

education expenditure. Rearing a child necessarily takes fraction τ ∈ (0,1) of an adult’s time,

which is given exogenously. Accordingly, the budget constraints for the young and old adults are

given by:

wtht(1− τnt) = c1,t + st + et(wtht)nt; (2)

c2,t+1 = (1 + rt+1)st, (3)

where et is the fraction of income per child spent on education, st is savings and rt+1 is interest

rate. Non-negativity constraints apply to all the variables.

The human capital of children, ht+1, depends on human capital of parents, ht, parental invest-

ment in education per child, et, and quality of education system, θ, which is exogenously given.

ht+1 = (µ+ θet)
εht, ε < 1. (4)

The parameters satisfy µ ≥ 1 and ε ∈ (0,1). ε measures the returns to education. µ is the

intergenerational human capital spillovers that are basically skills learnt by children by observing

and imitating parents. The parametric restriction of µ ≥ 1 ensures that the growth rate of per

8



capita human capital does not become negative when parents do not invest in education. It ensures

that children will acquire knowledge and skills atleast equivalent to their parents when parents do

not educate their children.The assumption that quality of schooling is an argument in human

capital accumulation function is consistent with a number of studies. Hanushek et al. (2008)

find that lower-quality schools lead to higher dropout rates in case of Egyptian primary schools.

Similarly, Hanushek and Woessmann (2008) find that cognitive skills, a proxy for educational

quality, is positively related to individual earnings. In theoretical terms, Castelló-Climent and

Hidalgo-Cabrillana (2012) have shown in their theory of human capital investment that high-quality

education increases the returns to schooling and incentivizes human capital accumulation via two

channels- extensive and intensive margins. Higher quality makes education accessible to more

people (extensive margin), and once individuals decide to participate in higher education, higher

quality increases the investment made per individual (intensive margin). Parental human capital,

ht, as an input in human capital accumulation technology represents intergenerational transfers

of human capital, which is a common assumption in the literature (De la Croix & Doepke, 2004;

Kalemli-Ozcan, 2002, 2003; Tamura, 2001).

Individuals maximize utility in eq. (1) with respect to the constraints, eqs. (2) to (4) using

control variables c1,t, st, nt and et. The solution to individuals’ decision problem can either be

interior, or at a corner where the individuals choose zero education. The first-order conditions

yield the following solution, as in eqs. (5) to (8), for consumption and savings irrespective of

whether education is in the interior or at the corner:1

c1,t =
wtht

1 + β1 + β2
; (5)

st =
β1wtht

1 + β1 + β2
. (6)

For child quantity and quality, there exists a threshold level of quality of schooling. If quality

of schooling falls below the threshold, adults do not spent on child quality and maximize child

quantity. This constitutes the corner solution. In particular, following results are derived from the

1Detailed mathematical derivations are provided in Appendix A.

9



first-order conditions:

et =


0, if θ ≤ µ

τε ;

τθε− µ
θ(1− ε) , otherwise,

(7)

nt =


β2εθ

(1 + β1 + β2)µ
, if θ ≤ µ

τε ;

β2θ(1− ε)
(1 + β1 + β2)(τθ − µ)

, otherwise.

(8)

Inserting eq. (7) in eq. (4), we get an equation of motion for human capital as:

ht+1 =


µεht, if θ ≤ µ

τε ;[
ε(τθ − µ)

(1− ε)

]ε
ht, otherwise.

(9)

Below the threshold, quality of schooling is not an argument in human capital production function.

Without education expenditure, human capital of next generation consists of basic skills only. From

eqs. (5) to (8), irrespective of whether quality of schooling exceeds threshold or not, savings and

consumption are increasing in wtht and there is no direct effect of income on fertility because a

positive income effect of an increase in wages on fertility is balanced by a negative substitution

effect. The quality of schooling has a direct bearing on child quantity and quality. The following

lemma shows how quality of schooling influences fertility behavior.

Lemma 1 When quality of schooling is high enough to surpass the threshold, a marginal improve-

ment in the quality of schooling triggers a child quantity-quality trade-off such that adults bear lesser

number of children and invest more in education per child in response to improvement in quality

of schooling. However, when quality of schooling is lower than the threshold, then it has no effect

on child quality as adults do not invest in child’s education and focus instead on maximizing child

quantity.

Proof.By investigating the corner solution in eqs. (7) and (8), it can be immediately seen that

quality of schooling entails no child quantity-quality trade-off if quality of schooling falls below the

threshold. Adults do not spend on education and maximize fertility. To see the effect when quality

of schooling is above the threshold, we take the derivatives of the interior solution of et and nt with

respect to θ in eqs. (7) and (8). That is,

∂nt
∂θ

=
−µβ2(1− ε)

(1 + β1 + β2)(τθ − µ)2
< 0;
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∂et
∂θ

=
µ

(1− ε)θ2
> 0.

When quality of schooling is less than the threshold, the derivatives of the corner solution of et and

nt with respect to θ in eqs. (7) and (8) yield:

∂nt
∂θ

=
β2ε

(1 + β1 + β2)µ
> 0;

∂et
∂θ

= 0.

Thus, it can be seen that fertility changes are directly triggered by quality of schooling. Any

improvement in quality of schooling over and above the threshold makes learning in schools more

effective and, therefore, increases marginal returns to investment in human capital. Consequently,

a parent reduces fertility and spends more on education per child. Thus, quality of schooling can

be perceived as another plausible mechanism for triggering child quantity-quality trade-off besides

other commonly proposed mechanisms such as declining child mortality (Soares, 2005), rise in life

expectancy of parents (Boucekkine, Croix, & Licandro, 2003; Boucekkine, De la Croix, & Licandro,

2002; Hashimoto & Tabata, 2016; Kalemli-Ozcan, 2002, 2003), technical progress (Galor & Weil,

2000) and decline in gender wage gap (Galor & Weil, 1996). These theoretical results are in line

with recent empirical findings. For example, Hanushek et al. (2008) find that lower quality of

schooling leads to higher dropout rates in Egyptian primary schools. A cross-country analysis by

Castelló-Climent and Hidalgo-Cabrillana (2012) reveals that quality of education has a positive

effect on enrollment rates in secondary schooling only when quality of schooling is sufficiently high.

Lemma 2 An increase in returns to education, ε, leads to a child quantity-quality trade-off wherein

parents educate their children and bear lesser number of children when quality of schooling surpasses

the threshold. However, when quality of schooling is less than the threshold, returns to education

has no effect on education of children and parents maximize child fertility.

Proof.Taking the derivatives of the interior solution of et and nt with respect to ε in eqs. (7) and

(8), one gets that:
∂nt
∂ε

=
−β2θ

(1 + β1 + β2)(τθ − µ)
< 0;

∂et
∂ε

=
τθ − µ
θ(1− ε)2

> 0.
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When quality of schooling is less than the threshold, the derivatives of the corner solution of et and

nt with respect to ε in eqs. (7) and (8) yield:

∂nt
∂ε

=
β2θ

(1 + β1 + β2)µ
> 0;

∂et
∂ε

= 0.

This implies that returns to education is yet another factor that can trigger a child quantity-

quality trade-off. High returns to education implies education makes human capital more produc-

tive. Therefore, parents invest in education of their children and decide to have lesser number of

children. However, when quality of schooling is less than the threshold, then parents decide not to

make any investment in the education of children and, therefore, returns to schooling has no effect

on child quality and child quantity is maximized. Both Lemmas 1 and 2 will be used later in our

analysis.

2.3 Final Goods Sector

The final homogenous good, Yt is produced and sold in a competitive market. For any firm, the

production structure at time t is defined as:

Yt = l1−αt

At∑
i=1

xαit, 0 < α < 1. (10)

The production of final good uses land and a variety of intermediate inputs. For simplicity, the

total supply of land, lt, is kept fixed and has been normalized to 1. xi,t is the quantity of ith

intermediate input that is used in the final goods production and At is the number of available

varieties of intermediate inputs or the level of technological knowledge that grows through R&D.

The parameter α is the capital share in final goods production. This production specification

exhibits diminishing marginal productivity in each input, lt and xi,t, and constant returns to scale

in all inputs together. The existence of additive separability across xi,t implies that the marginal

product of intermediate input i is independent of the quantity employed of intermediate input i+1.

Thus, a new type of intermediate good is neither a direct substitute for nor a direct complement of

the types that already exist. Therefore, discoveries of new types of intermediates do not make any
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existing types obsolete. The price of final good PY has been normalized to 1. In each period t, the

final good producers solve the following profit maximization problem with respect to their choice

of range of intermediate inputs:

Maxxit,lt πt(Y ) = l1−αt

At∑
i=1

xαit −
At∑
i=1

pitxit − dtlt, (11)

where pit is the unit monopoly price of ith intermediate input and dt is the rate of return on land.

The first-order conditions imply that:

pit = αl1−αt xα−1
it . (12)

Eq. (12) yields the demand for each intermediate input as

xit =

[
α

pit

] 1
1−α

lt; (13)

dt = (1− α)l1−α−1
t

At∑
i=1

xαit =
(1− α)Yt

lt
. (14)

where the last expression is deduced after substituting for Yt from eq. (10). We have not explicitly

modeled the government sector. However, to keep the exposition simple, it has been assumed that

the total return on land is paid by the households to the government.

An analysis of the intermediate goods sector ensues.

2.4 Intermediate Goods Sector

Each intermediate good i is produced by monopolist producer who holds the blueprint to produce xit

quantity at time t. Each intermediate good uses only capital in a one-to-one production technology,

or xit = Kit. Thus, the amount of intermediate inputs produced of all types equals the aggregate

capital stock of the economy.

At∑
i=1

xit = Kt. (15)

Each ith intermediate good producer maximizes profits with respect to his/her choice of capital.

That is,

Maxxit πt(i) = pitxit − rtKit = αl1−αt xαit − rtxit, (16)
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where the expression in the r.h.s derives from substituting the solution to pit from eq. (12) and xit

= Kit. rt is the price per unit capital. The first-order condition leads to

α2l1−αt xα−1
it = rt. (17)

Using eq. (12), we get the solution to equilibrium price as pit = pt =
rt
α

. This is the monopoly price

charged as a markup over marginal cost. Note that being independent of i, this price is constant

across all intermediate goods. From eq. (13), this implies that quantity produced of each i is the

same, that is, xit = xt =

[
α2

rt

] 1
1−α

lt. In equilibrium, the net profit of the ith monopolist is given

by:

πt = ptxt − rtxt ≡
[rt
α
− rt

]
xt ≡

[
1− α
α

]
rtxt; (18)

= α(1− α)l1−αt xαt , (19)

where last expression has been derived using eq. (17) and xit = xt at the equilibrium. Since,

in equilibrium, intermediate inputs are sold at the same price and demanded in equal quantities,

aggregate physical capital is given by Kt = Atxt. Inserting this information into the production

function of the final good, eq. (10) simplifies to

Yt = l1−αt A1−α
t Kα

t . (20)

Accordingly, equilibrium profits of the ith monopolist in eq. (3.19) can be expressed as:

πt = α(1− α)
Yt
At
. (21)

This follows after substituting for xt from Kt = Atxt and using eq. (20). Further, the price per

unit of capital can be expressed as:

rt = α2l1−αt

[
At
Kt

]1−α
. (22)

Further using eq. (20), rental rate of capital can be simplified to:

rt = α2

[
Yt
Kt

]
. (23)

The R&D sector is now discussed.

14



2.5 R&D Sector

Under the assumption of free entry into the R&D sector, firms employ human capital to develop

new blueprints which are sold at price, pAt , common to all blueprints due to competition in the

market for blueprints. We consider two types of regimes that can drive R&D activities. The R&D

sector produces blueprint of an intermediate variety either by imitating from the world technology

frontier or by innovating upon the local technology level. Following Papageorgiou and Perez-

Sebastian (2006) and Guilló, Papageorgiou, and Perez-Sebastian (2011), the production function

of technology for a firm is postulated as:

At+1 −At = δtHt, (24)

where At+1−At are new blueprints. Productivity of R&D activity, δt, is constant at the firm level

but at the aggregate level, it is defined as:

Innovation regime : δt = δ̄Hλ−1
t Aφt ; (25)

Imitation regime : δt = δ̄Hλ−1
t Aφt

[
Āt
At

]
. (26)

R&D productivity depends positively on the number of already existing ideas, At, and human

capital employed in R&D sector, Ht. The parameter δ̄ denotes general productivity in R&D.

0 < φ < 1 measures intertemporal knowledge spillovers (standing-on-shoulders effect) and 0 < λ < 1

measures returns to R&D effort (stepping-on-toes effect). Āt is the world technology frontier that

is assumed to grow exogenously at rate, gĀ. The standing-on-shoulders effect may arise as existing

knowledge contributes to the capacity to innovate. The returns to human capital differ between

the firm level and the economy-wide level. There exists constant returns to R&D effort at the firm

level as revealed by eq. (24). However, the R&D technology shows diminishing returns to R&D

effort as researchers generate negative externality at the aggregate level (stepping-on-toes effect).

The stepping-on-toes effect may arise due to competition among multiple R&D firms to become

the first to succeed at creating and patenting a new blueprint and/or process. If all other factors

are held constant, an increase in R&D effort will induce increased duplication of research efforts

leading to stepping-on-toes effect. Additionally, R&D productivity depends on a catch-up term,
Āt
At

under imitation regime. Akin to Nelson and Phelps (1966),
Āt
At

is the catch-up term which

signifies the fact that greater the technological gap between leader and follower economy, higher
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the potential of the follower economy to catch up through imitation of existing technologies. Since

all R&D firms end up in a symmetric equilibrium, the production function of technology under

imitation regime at the aggregate level reduces to:

At+1 −At = δ̄Hλ
t A

φ
t

[
Āt
At

]
. (27)

The catch-up effect is specific to imitation regime alone. Under the innovation regime, firms

innovate upon the local technology level to discover new blueprints. In this case, the aggregate

production function reduces to:

At+1 −At = δ̄Hλ
t A

φ
t . (28)

Firms in the R&D sector maximize their profits, given by:

πt,A = pAt (At+1 −At)− wtHt, (29)

where pAt is price of a blueprint, At+1 − At are number of new blueprints discovered and wt is the

wage rate.

Under both imitation and innovation regimes, using eq. (24), the profit function of an R&D

firm can be expressed as:

πt,A = pAt (δtHt)− wtHt. (30)

Again, under both the technology regimes, maximization of profits leads to the following optimality

condition:

wt = pAt δt. (31)

Substituting for δt from eq. (25), the wage rate under innovation regime is given by:

wint = pAt δ̄H
λ−1
t Aφt =

[
pAt δ̄H

λ
t A

φ
t

Ht

]
. (32)

Similarly, wage rate under imitation regime is given by:

wimt =
pAt δ̄H

λ
t A

φ
t
Āt
At

Ht
. (33)
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Using eqs. (27) and (28), the wage rate under both the regimes simplifies to

wt =

[
pAt (At+1 −At)

Ht

]
, (34)

where wages of scientists are increasing in price of blueprint (price of patent) and number of

blueprints discovered.

The decision to produce an intermediate variety by an intermediate input producer depends

on the difference between the cost of acquiring the patent for a blueprint from the R&D sector,

pAt , and the monopoly profits, πt, that can be earned by producing intermediate varieties. Given

this information, the R&D sector will set the price of patent, pAt such that it extracts the present

discounted value of monopoly profits of intermediate firms. The research arbitrage argument goes

as follows.

Suppose an intermediate firm faces two options. First, it can make an investment of pAt in

physical capital and earn the market rate of interest, rt. Alternatively, it can purchase a patent,

earn profits in one period and, then, sell the patent. In equilibirum, the rate of return from both

these investments should be the same. That is,

rtp
A
t = πt + pAt+1 − pAt .

The l.h.s of this equation is the interest earned from investing in physical capital. The r.h.s is the

sum of the profits earned and the capital gain/loss resulting from the change in price of patents

over time. Rearranging the above equation yields the following research arbitrage condition:

rt =
πt

pAt
+

[
pAt+1 − pAt

pAt

]
. (35)

This equation states that R&D sector charges a price of blueprint, pAt , such that intermediate input

producers are indifferent between purchasing a blueprint to produce an intermediate variety and

not producing the intermediate variety at all. The dividend rate, given by,
πt

pAt
. and the capital

gain/loss,
pAt+1 − pAt

pAt
, equal the market rate of return on investment, rt. This research arbitrage

condition yields the following price of blueprint:2

pAt =
πt

1 + rt −
[

(1 + gK,t)
(1 + gA,t)

]α . (36)

2Detailed derivation is provided in Appendix B.
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Inserting this in eq. (34), the wage rate under both the technology regimes can be expressed as:

wt =
α(1− α)

1 + rt −
[

(1 + gK,t)
(1 + gA,t)

]α YtHt
gA,t, (37)

where gK,t =
Kt+1 −Kt

Kt
and gA,t =

At+1 −At
At

.

Alternatively, similar to Strulik et al. (2013) and Prettner (2012), it can be assumed that patent

protection for a newly discovered blueprint lasts only for one period t (i.e. one generation) to do

away with issues of discounted present value of benefits from R&D. This leads to a slightly modified

Romer (1990) production structure where patents last for one period. This assumption simplifies

the exposition considerably as it keeps the basic incentive to create new knowledge intact while

avoiding the intertemporal problems of patent pricing and patent holding. In the R&D sector,

once a blueprint has been produced, a large number of potential intermediate input producers bid

for the patent of the blueprint. The decision to produce a new intermediate variety depends on a

comparison of operating profits that can be earned by producing an intermediate variety in time

period t (when patent protection is valid) and the cost of buying blueprint. Since the market for

blueprints is competitive, price of blueprint will be bid up until it is equal to the operating profit

of intermediate input firm in period t. Therefore, price of blueprints can be written as:

pAt = πt = α(1− α)
Yt
At
, (38)

which follows from eq. (21). Accordingly, wage rate in eq. (34) under both the regimes can be

expressed as:

wt = α(1− α)
Yt
Ht
gA,t, (39)

where gA,t =
At+1 −At

At
.

18



3 Dynamics and Steady-State Properties of the Styl-

ized Economy

3.1 Dynamics of the Key Variables

This section examines the dynamic properties of our stylized economy. First, we discuss the dy-

namics of physical factors of production. The aggregate population, Nt, grows at the fertility rate,

nt as follows:

Nt+1 = ntNt, (40)

where nt is endogenously given by eq. (8). Taking child rearing time into account, the size of the

workforce is given by Lt =(1− τnt)Nt. Since child rearing costs are constant, and from eq. (8) we

know that fertility rate is also constant over time, the workforce grows at the fertility rate, as:

Lt+1 = ntLt. (41)

Assuming that physical capital depreciates fully within a generation (that is, depreciation is 100

percent) so that next period’s capital stock consists of this period’s aggregate savings, the market

clearing condition for capital market will be

Kt+1 = stNt, (42)

where Nt is the population of generation t.

If patents are infinitely-lived, then wage rate is given by eq. (37). Inserting the solutions for

savings from eq. (6) and wage rate from eq. (37) and inserting eq. (20) into eq. (42) and using the

fact that Nt = Lt from eqs. (40) and (41), we get the equation governing the evolution of aggregate

physical capital as:

Kt+1 = B1K
α
t A

1−α
t gA,t, (43)

where B1 =
β1α(1− α)l1−αt

(1 + β1 + β2)

[
1 + rt −

[
(1 + gK,t)

(1 + gA,t)

]α] .
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For the alternate case, when patents last for one period, the equation for physical capital

accumulation is expressed as:

Kt+1 = B2K
α
t A

1−α
t gA,t, (44)

where B2 =
[

β1
1+β1+β2

]
α(1 − α)l1−αt . The above expression is derived after inserting the solutions

for savings from eq. (6) and wage rate from eq.(39) and inserting eq. (20) into eq. (42) and using

the fact that Nt = Lt from eqs. (40) and (41).

Next, we discuss the dynamics of aggregate human capital, Ht ≡ htLt. The dynamics of per

capita human capital are given by eq. (9). Using eqs. (9) and (41), the equation for aggregate

human capital accumulation can be written as:

Ht+1

Ht
=


µεnt, if θ ≤ µ

τε ;[
ε(τθ − µ)

(1− ε)

]ε
nt, otherwise.

(45)

From eqs. (27) and (28), the dynamics of total factor productivity can be expressed as:

Imitation regime:

At+1 = At + δ̄Hλ
t A

φ
t

[
Āt
At

]
, (46)

Innovation regime:

At+1 = At + δ̄Hλ
t A

φ
t . (47)

This system of equations fully describes the equilibrium dynamics of our model economy for all the

plausible cases.The next subsection characterises the balanced growth paths of an economy for two

cases - a) when an economy’s quality of education system is sufficiently high, θ >
µ

τε
, and b) when

quality of schooling is less than the threshold, θ ≤ µ

τε
.

3.2 Characterizing the Balanced Growth Path

A balanced growth path (BGP) is a long run equilibrium of the economy, also defined as the steady

state, along which growth rate of variables is either zero or constant over time. For any variable x,

the growth rate is denoted by gx,t = (xt+1−xt)/xt, and its rate of change by g̃x,t = (gx,t+1−gx,t)/gx,t.

The balanced growth, thus, requires g̃x,t = 0. We denote the growth rate of x along the BGP
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by gx, i.e., by omitting the time index for brevity. We begin by evaluating the physical capital

accumulation along the BGP. When patents last forever, the growth rate of physical is derived from

eq. (43) as:

1 + gK,t ≡
Kt+1

Kt
=

[
Kt

Kt−1

]α [ At
At−1

]1−α [ gA,t
gA,t−1

]1 + rt−1 −
[

(1+gK,t−1)
(1+gA,t−1)

]α
1 + rt −

[
(1+gK,t)
(1+gA,t)

]α
 . (48)

When patents last for one period, we deduce from eq. (44) that:

1 + gK,t ≡
Kt+1

Kt
=

[
Kt

Kt−1

]α [ At
At−1

]1−α [ gA,t
gA,t−1

]
. (49)

It has been proved in Appendix C that both the cases of infinitely-lived patents and one-period

lasting patents yield the same steady state condition:

gK = gA. (50)

The growth of physical capital and productivity are positively correlated along the steady state.

Next, we consider the growth rate of total factor productivity, for which we observe from eq. (46)

that rate of technical progress under the imitation regime can be written as:

1 + gA,t ≡
At+1

At
= 1 +

δ̄
1

2−φH
λ

2−φ
t Āt

1
2−φ

At
. (51)

Since along BGP, l.h.s is constant. Therefore, r.h.s must be constant as well, and this happens

when

(1 + gA) = (1 + gH)
λ

2−φ (1 + gĀ)
1

2−φ = [(1 + gh)n]
λ

2−φ (1 + gĀ)
1

2−φ . (52)

The r.h.s follows from the definition of aggregate human capital, that is, Ht = htLt and eq. (41).3

Similarly, under innovation regime, we observe from eq. (47) that:

1 + gA,t ≡
At+1

At
= 1 +

δ̄
1

1−φH
λ

1−φ
t

At
. (53)

Using the definition of BGP, we derive the long run rate of technological progress under the inno-

vation regime to be:

(1 + gA) = [(1 + gh)n]
λ

1−φ . (54)

3We have dropped the time index of fertility rate as fertility rate remains constant over time.
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Thus, under both imitation and innovation regimes, technological progress is driven by growth in

aggregate human capital. Human capital accumulation improves productivity of researchers, which

fosters technological progress. Besides aggregate human capital, the growth of world technology

frontier is an additional driver of growth under the imitation regime. The follower economy takes

advantage of existing technologies through technology adoption. Therefore, as the world technology

frontier grows, it enhances the potential of follower country to catch up through imitation.

Next, we ascertain the growth rates of aggregate GDP and per capita consumption along BGP.

From eq. (20), we observe that

1 + gY,t ≡
Yt+1

Yt
=

(
Kt+1

Kt

)α(At+1

At

)1−α
; (55)

Using eq. (50), the long run growth rate of GDP can be expressed as

gY = gA. (56)

Putting together all information from eqs. (50), (52), (54) and (56), we derive the balanced growth

path of the economy under the two technology regimes.

Imitation regime:

gK = gY = gA = [(1 + gh)n]
λ

2−φ (1 + gĀ)
1

2−φ − 1; (57)

Innovation regime:

gK = gY = gA = [(1 + gh)n]
λ

1−φ − 1, (58)

where

[(1 + gh)n] = (1 + gH) =


β2θε

(1 + β1 + β2)µ1− ε , if θ ≤ µ
τε ;

β2θε
ε(1− ε)1−ε

(1 + β1 + β2)(τθ − µ)1−ε , otherwise.

This follows after substituting the value of n from eq. (8) in eq. (45). Furthermore, we observe

from the consumer’s optimisation exercise that:

ct+1

ct
= β1(1 + rt+1). (59)
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The r.h.s follows from substituting values of ct and st from eqs. (5) and (6) in eq. (3). Using eqs.

(23), (57) and (58), we derive that:

ct+1

ct
= β1

[
1 + α2 Yt

Kt

]
. (60)

Along the BGP, since gK = gY , per capita consumption grows at a constant rate under both the

technology regimes.

We next analyze the evolution of wage rate and rate of interest along the steady state. From

eq. (23), under both the technology regimes, rate of interest is given by:

rt = α2 Yt
Kt
.

A closer examination of the above expression for rate of interest reveals that it will be constant

along the BGP if At and Kt grow at the same rate. From eqs. (57) and (58), it is derived that

along the BGP, this is indeed the case. That is,

gK = gY .

This implies rate of interest is constant along the BGP under both the technology regimes, which

is as one would expect. Further, when patents are infinitely-lived, we know that eq. (37) yields the

following expression for wage rate under both the technology regimes:

wt =
α(1− α)

1 + rt −
[

1 + gK,t
1 + gA,t

]α YtHt
gA,t,

where gK,t =
Kt+1 −Kt

Kt
and gA,t =

At+1 −At
At

.

Alternatively, when patents last for one time-period, we know from eq. (39) that wage rate is

expressed as

wt = α(1− α)
Yt
Ht
gA,t.

From eq. (58), we know that under innovation regime:

gK = gY = gA = [(1 + gh)n]
λ

1−φ − 1.
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This implies that along the BGP for both the cases of finitely and infinitely-lived patents, wage

rate is constant if aggregate human capital and aggregate output grow at the same rate. This holds

true under the condition:

λ+ φ = 1. (61)

The intuition behind this condition is that joint sum of returns to R&D effort and intertemporal

knowledge spillovers should be equal to 1 to ensure constant returns to R&D sector. Only when

this condition is met, aggregate human capital and aggregate output grow at the same rate and

wage rate stabilizes.

Analogously, we know from eq. (57) that under imitation regime:

gK = gY = gA = [(1 + gh)n]
λ

2−φ (1 + gĀ)
1

2−φ − 1.

This implies that wage rate is constant along the BGP for both the cases of finitely and infinitely-

lived patents if aggregate human capital and aggregate output grow at the same rate. This holds

true only if

λ+ φ = 1 and (1 + gĀ) = (1 + gH). (62)

Thus, the parametric restriction in eq. (61) is necessary for the economy to be in steady state.

In what follows, we analyze what happens to the stylized economy when the parametric condi-

tions in eq. (61) is not satisfied. Ideally, we should characterize the out-of-steady state dynamics

of the macro-variables under the two technology regimes. However, out-of-steady state analysis

is tedious as the calculations are mathematically intractable. Therefore, we discuss the behavior

of the variables under the two regimes of technological improvement when the parametric condi-

tion specified in eq. (61) is not met around the BGP. Accordingly, it is assumed that the other

parametric condition, (1 + gĀ) = (1 + gH) still holds as the economy is initially moving along the

BGP.

Suppose the economy is on the BGP but due to some exogenous occurence, the value of λ or φ

falls such that λ+φ < 1. It has been proved in Appendix D that when λ+φ < 1, the wage rate falls

over time for both the cases of one-period lived and infinitely-lived patents under both the regimes

of technological improvement. Consequently, per capita consumption and savings rate in absolute
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terms decline under both the technology regimes. Thus, both innovation and imitation economies

will shrink over time if diminishing returns to R&D sector set in around the steady state, and the

individual economies will diverge.

Alternatively, if the value of λ or φ rises, such that λ+ φ > 1 along the BGP, then it is shown

again in Appendix D that under both the technology regimes, per capita consumption and savings

rate rise in absolute terms as the wage rate rises over time for both the cases of infinitely-lived

and one-period lived patents. However, this is only a theoretical possibility as there is no empirical

support for the hypothesis that there exists increasing returns to R&D sector, that is, λ+φ > 1 in

the real world. Thus, an economy on the BGP implies that

λ+ φ = 1,

which is, therefore, a necessary condition for the steady state under both the innovation and

imitation regimes.

Further, from eq. (57), (1 + gH) under imitation regime can be expressed as:

(1 + gH) =
(1 + gA)

2−φ
λ

(1 + gĀ)λ
, (63)

Substituting in eq. (62) and simplifying for (1 + gĀ), we get that

(1 + gĀ) = (1 + gA)
2−φ

λ(1+λ) . (64)

Thus, the frontier economy will grow at the above rate along the BGP. Also, it can be observed

that the frontier economy will grow at a higher rate than the follower economy only if

2− φ
λ(1 + λ)

> 1, (65)

which will be true if

λ+ φ < 2− λ2. (66)

This is indeed the case given λ + φ = 1 from eq. (62). Thus, the evolution of wage rate and rate

of interest can be stated in terms of the following proposition.

Proposition 3.1 In case of both one-period and infinitely-lived patents, when θ >
µ

τε
or θ ≤ µ

τε
:
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• Under both the innovation and imitation regimes, rate of interest is constant along the bal-

anced growth path.

• Wage rate is constant under innovation regime along the balanced growth path implying the

necessary condition:

λ+ φ = 1.

• Wage rate is constant under imitation regime along the balanced growth path under the nec-

essary condition:

gĀ = (1 + gA)
2−φ

λ(1+λ) and λ+ φ = 1

Additionally, it can be deduced from eq. (58) that when λ+φ = 1 holds, the BGP under innovation

regime can be redefined as

gK = gY = gA = [(1 + gh)n]− 1, (67)

where

[(1 + gh)n] = (1 + gH) =


β2θε

(1 + β1 + β2)µ1− ε , if θ ≤ µ
τε ;

β2θε
ε(1− ε)1−ε

(1 + β1 + β2)(τθ − µ)1−ε , otherwise.

Furthermore, we derive the conditions when the economic growth rate is higher for an economy

with high quality of schooling, θ >
µ

τε
as compared to an economy with lower quality of schooling,

θ ≤ µ

τε
under the two technology regimes. We assume that when θ >

µ

τε
, quality of schooling

is denoted by θh for that particular economy whereas quality of schooling is denoted by θl for an

economy with quality of schooling less than the threshold, θ ≤ µ

τε
. As shown in eqs. (67) and

(57), the rate of economic growth is contingent upon the rate of human capital accumulation under

the two technology regimes. This means that under the two technology regimes, an economy with

higher quality of schooling, θh, grows at a higher rate as compared to an economy with a lower

quality of schooling, θl when the following condition holds true:

gH|(θh> µ
τε

) > gH|(θl≤ µ
τε

)
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Substituting for gH|θh> µ
τε

and gH|(θl≤ µ
τε

) from eqs. (67) and (57), we have:

β2θhε
ε(1− ε)1−ε

(1 + β1 + β2)(τθh − µ)1−ε >
β2θlε

(1 + β1 + β2)µ1− ε ,

which on simplification yields the following condition:

θh > θl

[
(τθh − µ)ε

µ(1− ε)

]1−ε
. (68)

We know that,

θ >
µ

τε
.

Multiplying both sides by τ and then, subtracting µ from both sides yields

(τθ − µ)ε

1− ε
> µ,

Since µ ≥ 1, we have:

(τθ − µ)ε

1− ε
> 1. (69)

Thus,

[
(τθh − µ)ε

µ(1− ε)

]1−ε
> 1. Thus, it can be deduced that,

Proposition 3.2 When the necessary conditions stated in Proposition 3.1 are satisfied, then

• Under innovation regime, aggregate output, physical capital stock, total factor productivity and

per capita consumption grow at a constant rate along the balanced growth path characterized

by eqs. (67) and (60).

• Under imitation regime, aggregate output, physical capital stock, total factor productivity and

per capita consumption grow at a constant rate along the balanced growth path characterized

by eqs. (57) and (60).

• Under the two technology regimes, an economy with higher quality of schooling, θh >
µ

τε
, expe-

riences a higher economic growth as compared to an economy with lower quality of schooling,

θl ≤
µ

τε
only if the quality of schooling, θh is sufficiently high such that:

θh > θl

[
(τθh − µ)ε

µ(1− ε)

]1−ε
. (70)
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Intuitively, under both the technology regimes, the self-sustaining growth path is driven by human

capital accumulation when quality of schooling exceeds the threshold, θ >
µ
τε . At the micro level,

parents decide to have fewer number of children and invest more in their education. This follows

from Lemma 1. At the macro level, this trade-off raises the rate of human capital accumulation,

which encourages faster technological progress and, therefore, economic growth. Besides human

capital, growth of world technology frontier is an additional driver of growth under the imitation

regime via the catch-up effect.

Alternatively, when quality of schooling is less than the threshold, θ ≤ µ
τε , parents do not

invest in education of children and instead maximize fertility. In this case, the balanced growth

path of the economy is driven only by population growth, which in turn, is determined by the

fertility rate. Thus, the drivers of economic growth differ depending upon the level of quality of

schooling. When quality of schooling surpasses the threshold level, economic growth is driven by

human capital accumulation whereas it is driven by population growth when quality of schooling

is less than the threshold.

Furthermore, a mere surpassing of the threshold level of quality schooling is not sufficient

enough for an economy to experience a higher economic growth rate as compared to an economy

with quality of schooling lower than the threshold level. Under the two technology regimes, quality

of schooling should be high enough such that it leads to high enough investments in education of

children such that the growth-stimulating effect overpowers the growth-impeding effect of quality

of schooling by a larger magnitude. This, in turn, can only ensure that an economy with a higher

quality of schooling ( that is, θh >
µ

τε
) experiences a higher economic growth as compared to an

economy with a lower quality of schooling (that is, θl ≤
µ

τε
).

Otherwise, an economy with lower quality of schooling may experience a higher economic growth

rate than an economy with higher quality of schooling for large enough values of child rearing costs, τ

or for small enough value of intergenerational human capital spillovers, µ and returns to education, ε

respectively. This follows directly from eq. (70). It can be observed that the expression,
(τθh − µ)ε

µ(1− ε)
is increasing in τ . This implies that the threshold value of quality of schooling for higher economic

growth is so high that an economy may consider not investing an education of the future generation

as a relatively more beneficial outcome. In this particular case when the value of τ is sufficiently

high, population growth rate can be a more effective driver of economic growth . Similarly, it can
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be shown that:

∂

∂µ

(τθh − µ)

µ
=
−τθh
µ2

< 0;

∂

∂ε

ε

1− ε
=

−1

(1− ε)2
< 0.

This implies that the threshold value of quality of schooling for higher economic growth is decreasing

in the value of µ and ε respectively. Thus, this threshold value of quality of schooling can be high

enough for sufficiently small µ and ε such that population growth rate can be a more effective driver

of economic growth and an economy may not invest in human capital of its future generation.

Additionally, eqs. (57) and (67) suggest that technological progress and aggregate output

are positively correlated with population growth. This implies that decline in population growth

entails a decline in rate of technical progress as postulated by conventional R&D based growth

models (Jones, 1995; Romer, 1990). This type of macro-level superficial examination misses the

point that aggregate human capital accumulation and fertility rate are inversely related via quality-

quantity trade-off at the family/household level as shown in Lemma 1 and 2. The investment in

education increases and fertility rate falls simultaneously as the quality of schooling increases above

the threshold. This quality-quantity trade-off implies that the effect of population growth on total

factor productivity growth and GDP growth cannot be analyzed in isolation keeping human capital

growth constant. This leads to the question: how does improvement in quality of schooling and

returns to education affect total factor productivity growth and, therefore, economic growth by

influencing fertility and education decisions?

This can be answered by carrying out comparative dynamics with respect to these parameters

that has been done in the next subsection.

3.3 Comparative Dynamics Analyses of the Balanced Growth Path

3.3.1 Comparative Dynamics w.r.t Quality of Schooling, θ

Since total factor productivity growth and economic growth depend on the rate of human capital

accumulation under both the regimes of technological improvement, we first carry out comparative

dynamics of the growth rate of aggregate human capital with respect to schooling quality. Let the

economy be in steady state now. We take the derivative of the growth rate of aggregate human
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capital with respect to schooling quality, θ, when it exceeds the threshold, that is, θ >
µ

τε
. Detailed

derivations of eqs. (71) and (72) are provided in Appendix E.

∂gH
∂θ

=

[
(1 + gh)β2(ετθ − µ)(1− ε)

(1 + β1 + β2)(τθ − µ)2

]
> 0, (71)

in view of ε < 1. Thus, in the aggregate, the growth rate of technology increases in response to an

increase in schooling quality which sustains economic growth in the long-run.

We next analyze the derivative of the growth rate of aggregate human capital with respect to

schooling quality when it is less than the threshold, that is, θ ≤ µ

τε
. We get that,

∂gH
∂θ

=

[
β2ε

(1 + β1 + β2)µ1−ε

]
> 0. (72)

Thus, it can be deduced that,

Proposition 3.3 The long-run rate of technical progress, gA, and economic growth, gY , increase in

response to an improvement in the quality of schooling on account of different channels, depending

upon the quality of schooling, θ:

• When θ >
µ

τε
, gA and gY are increasing in θ due to higher rate of human capital accumulation

under both the regimes of technological improvement.

• When θ ≤ µ

τε
, gA and gY are increasing in θ due to higher population growth rate under both

the regimes of technological improvement .

The intuitive explanation for the impact of a change in quality of schooling on the long-run rate

of technical progress and economic growth is as follows. When quality of schooling surpasses the

threshold, it has two opposing effects on human capital accumulation. We know from Lemma 1

that an improvement in quality of schooling increases investment in the education of a child. This

stimulates the accumulation of human capital which fosters technical progress leading to higher

economic growth in the economy. This effect can be regarded as the growth-stimulating effect. The

increase in education is also accompanied by a decline in fertility rate as the quality of education

improves. This constitutes the growth-impeding effect that reduces the total factor productivity

growth and economic growth by contracting the pool of available researchers. Total factor pro-

ductivity growth and economic growth will accelerate or decelerate depending upon the relative
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magnitude of the two effects. As shown by eq. (71), the growth-stimulating effect overpowers the

growth-impeding effect of a change in quality of schooling when quality of schooling exceeds the

threshold, that is, θ >
µ

τε
.

When quality of schooling is less than the threshold, parents do not educate their children and

instead focus on having more children. In this particular case, there exist no growth-stimulating

and growth-impeding effects of quality of schooling. In this case, the rate of technical progress and

economic growth increase in response to an increase in the quality of schooling solely due to higher

population growth, as parents focus on maximizing fertility when quality of schooling is less than

the threshold.

Thus contingent upon the quality of schooling, there are two different channels at work which

foster technical progress and economic growth. On one hand, quality of schooling raises total factor

productivity growth and economic growth due to better quality of human capital in the economy

as parents educate their children when quality of schooling surpasses the threshold. On the other

hand, quality of schooling raises total factor productivity growth and economic growth due to higher

population growth as parents have more children and impart no education to them when quality

of schooling is less than the threshold. This result is similar to Hashimoto and Tabata (2016)

finding about old-age survival probability and economic growth. They find that in economies in

which old-age survival probability is sufficiently low, an increase in old-age survival probability

motivates individuals to invest more in their own education, accelerating the accumulation of per

capita human capital and, thereby, enhancing the long-run growth rate of the economy. However,

in economies where old-age survival probability is sufficiently high, an increase in old age survival

probability will lead to decline in population growth rates, thereby lowering the long-run growth

rate of the economy.

We next consider the comparative dynamics of per capita income, yt = Yt/Lt with respect to

θ. At the steady state, the growth rate of per capita income under the innovation regime is given

by:4

(1 + gy) = (1 + gh). (73)

4Detailed derivation is provided in Appendix F
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And under the imitation regime, it is given by:

gy = (1 + gĀ)
1

2−φ (1 + gh)
λ

2−φn
−1
2−φ − 1. (74)

When θ >
µ

τε
, differentiating per capita income growth rate with respect to θ under the innovation

regime yields:

∂gy
∂θ

=
(1 + gy)τε

τθ − µ
> 0, (75)

since θ >
µ

τε
⇒ θ >

µ

τ
as ε < 1.

Similarly, if we differentiate per capita income growth rate with respect to θ under the imitation

regime, we get that:

∂gy
∂θ

=
1 + gy
2− φ

[
λτε

τθ − µ
+

µ

θ(τθ − µ)

]
> 0, (76)

as θ >
µ

τε
and ε < 1.

We next determine the comparative dynamics of gy with respect to θ when θ ≤ µ

τε
. Differenti-

ating growth rate of per capita income with respect to θ yields5-

Innovation regime:

∂gy
∂θ

= 0; (77)

Imitation regime:

∂gy
∂θ

=
−(1 + gy)

θ(2− φ)
< 0. (78)

An examination of these derivatives yields the following result.

Proposition 3.4 Along the balanced growth path,

• When θ >
µ

τε
, gy is unambiguously increasing in θ under both the innovation and imitation

regimes of technological improvement.

• When θ ≤ µ

τε
, gy is unaffected by θ under the innovation regime of technological improvement.

However, gy is unambiguously decreasing in θ under the imitation regime of technological

improvement.

5Detailed derivation of eqs. (77) and (78) are again provided in Appendix F.
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The intuitive explanation for these results is as follows. We know that per capita income is yt =

Yt/Lt. The growth rate of per capita income along the BGP can be expressed as (1+gy) =
(1 + gY )

n
.

It is known from Proposition 3.3 that the economic growth rate, gY , is increasing in θ as growth-

stimulating effect dominates the growth-impeding effect of quality of schooling when it exceeds the

threshold. Also, it is known from Lemma 1 that parents bear lower number of children in response

to an improvement in quality of schooling. Thus, the fertility rate or the population growth rate

is decreasing in θ. Consequently, the growth rate of per capita income rises as quality of schooling

improves under both the technology regimes when θ >
µ

τε
.

Alternatively, when θ ≤ µ

τε
, we know from eq. (9) that:

(1 + gh) = µε.

It follows from eq. (7) that parents do not invest in education of children when quality of schooling

is less than the threshold and, therefore, human capital consists of basic skills only. As a result,

quality of schooling has no impact on gy under the innovation regime as along BGP:

gy = (1 + gh).

This follows from eq. (73).

Under the imitation regime, it follows from eqs. (74) and (9) that:

gy = (1 + gĀ)
1

2−φ (µ)
ελ

2−φn
−1
2−φ − 1.

It has been shown in Lemma 1 that parents maximize fertility and do not spend on education of

their children. Thus, fertility rate rises as quality of schooling rises when θ ≤ µ

τε
. As a consequence,

growth rate of per capita income falls as quality of schooling rises.

Next, the comparative dynamics with respect to returns to education, ε, are discussed.

3.3.2 Comparative Dynamics w.r.t Returns to Education, ε

Since rate of human capital accumulation determines the rate of technical progress and economic

growth, we first analyze the derivative of the growth rate of aggregate human capital with respect
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to returns to education. We get that,6

∂gH
∂ε

= (1 + gH)log

[
(τθ − µ)ε

1− ε

]
> 0, (79)

as
(τθ − µ)ε

1− ε
> 1 from eq. (69).

Similarly, when θ ≤ µ

τε
, the derivative of the growth rate of aggregate human capital with respect

to returns to education yields:

∂gH
∂ε

= (1 + gH)

[
1

ε
+ logµ

]
> 0. (80)

Thus, we have,

Proposition 3.5 The long-run rate of technical progress, gA, and aggregate output, gY , increase

in response to an increase in returns to education, ε, on account of different channels, depending

upon the quality of schooling, θ:

• When θ >
µ

τε
, gA and gY are increasing in ε due to higher rate of human capital accumulation

under both the regimes of technological improvement.

• When θ ≤ µ

τε
, gA and gY are increasing in ε due to higher intergenerational human capital

spillovers and higher population growth rate.

The intuitive explanation for the impact of a change in returns to education on the long-run rate

of technical progress and economic growth is as follows. We know from Lemma 2 that an increase

in returns to education triggers a child quantity-quality trade-off at the micro level. The threshold

value of quality of schooling,
µ

τε
, is decreasing in the value of ε. This implies that, ceteris paribus,

this critical threshold value decreases as returns to schooling increase when quality of schooling

exceeds the threshold. Therefore, parents educate their children and bear lower number of children

in response to an increase in returns to education. Similar to the impact of quality of schooling,

this micro level trade-off generates a growth-stimulating effect and a growth-impeding effect at the

macro level. The growth-stimulating effect overpowers the growth-impeding effect of a change in

returns to education when quality of schooling exceeds the threshold. Resultantly, an increase in

returns to education yields higher rate of technical progress and, therefore, higher economic growth

under both innovation and imitation regimes of technological improvement.

6Detailed derivations of eqs. (79) and (80) are provided in Appendix G.
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Alternatively, when quality of schooling is less than the threshold, parents do not educate their

children and, instead, focus on having more children. Therefore, similar to the effect of quality

of schooling, the rate of technical progress increases in response to an increase in the returns to

education due to higher population growth. Additionally, it can be observed from eq. (9) that

intergenerational human capital spillovers become more productive and spur growth rate of per

capita human capital as returns to education increase. On the whole, when θ ≤ µ

τε
, an increase

in returns to education yield higher rate of technical progress and, therefore, economic growth

under both innovation and imitation regimes due to higher growth rate of population and higher

intergenerational human capital spillovers.

We next consider the impact of a change in returns to education, ε, on the growth rate of per

capita income along the balanced growth path under the two technology regimes. When θ >
µ

τε
,

differentiating per capita income growth rate with respect to ε under the innovation and imitation

regimes, yields7-

Innovation regime:

∂gy
∂ε

= (1 + gy)

[
1

1− ε
+ log

(τθ − µ)ε

1− ε

]
> 0; and (81)

Imitation regime:

∂gy
∂ε

=
λ(1 + gy)

2− φ

[
1

1− ε
+ log

(τθ − µ)ε

1− ε

]
+

(1 + gy)

(2− φ)(1− ε)
> 0, (82)

since ε < 1 and
(τθ − µ)ε

1− ε
> 1 (from eq. (71) under both innovation and imitation regimes.

Further, we examine the case when θ ≤ µ

τε
. Differentiating per capita income growth rate with

respect to ε yields -

Innovation regime:

∂gy
∂ε

= (1 + gy)logµ > 0, (83)

since ε < 1 and µ ≥ 1.

Imitation regime:

∂gy
∂ε

=
λ(1 + gy)logµ

2− φ
− (1 + gy)

(2− φ)ε
. (84)

7Detailed derivation of eqs. (81), (82), (83) and (84) are provided in Appendix H
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Now,
∂gy
∂ε

< 0 if λεlogµ < 1 which is true as λ < 1, ε < 1 and µ ≥ 1. An examination of these

derivatives yields the following results.

Proposition 3.6 Along the balanced growth path,

• When θ >
µ

τε
, gy is unambiguously increasing in ε under both the innovation and imitation

regimes of technological improvement.

• When θ ≤ µ

τε
, gy is increasing in ε under the innovation regime of technological improvement.

However, gy is unambiguously decreasing in ε under the imitation regime of technological

improvement.

The intuitive explanation for this result is as follows. We know that per capita income is given by

yt = Yt/Lt. Accordingly, the growth rate of per capita income along the BGP can be expressed

as (1 + gy) =
(1 + gY )

n
. It is known from Proposition 3.5 that the economic growth rate, gY , is

increasing in ε as the growth-stimulating effect overpowers the growth-impeding effect of returns

to education when quality of schooling exceeds the threshold. Also, it is known from Lemma 2

that parents bear a lower number of children in response to a rise in returns to education. Thus,

akin to quality of schooling, the fertility rate or the population growth rate is decreasing in returns

to education, ε. Consequently, the growth rate of per capita income rises as quality of schooling

improves under both the technology regimes.

We next consider the case when θ ≤ µ

τε
. From eq. (73), it is known that along BGP, under the

innovation regime:

gy = gh.

When θ ≤ µ

τε
, from eq. (9) we have that:

gh = µε − 1.

On the one hand, when µ = 1, gh = 0, returns to education has no impact on gy under the innovation

regime. On the other hand, when µ > 1, it can be observed from eq. (9) that intergenerational

human capital spillovers become more productive. Thus, growth rate of per capita human capital
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and, therefore, growth rate of per capita income increases as returns to education increase.

Under the imitation regime, it follows from eq. (74) that:

gy = (1 + gĀ)
1

2−φ (1 + gh)
λ

2−φn
−1
2−φ − 1.

It follows from Proposition 3.5 that gY is increasing in ε as intergenerational human capital spillovers

become more productive and spur growth rate of per capita human capital as returns to education

increase. Also, it is known from Lemma 2 that parents maximize fertility in response to a rise in

returns to education when θ ≤ µ

τε
. It can be observed from eq. (74) that returns to education raise

population growth rate by a larger proportion as compared to the proportionate rise in growth rate

of per capita human capital as λ < 1. Therefore, growth rate of per capita income falls as returns

to education improve under imitation regime of technological improvement.

This completes the characterization of the balanced growth path of our decentralised economy.

4 Discussion

The existing literature on quality of schooling and economic growth shows that economic growth

and quality of schooling are positively correlated (see e.g. Bosworth & Collins, 2003; Ciccone &

Papaioannou, 2009; Islam, Ang, & Madsen, 2014b). This implies that developing countries should

adopt a two-pronged approach to enhance the skill set of its workers. Under this approach, coun-

tries should focus on improving quality of education also alongwith improving access to education.

Motivated by these observations, this chapter formulates an analytical framework to analyze the

impact of quality of schooling on economic growth of an economy under imitation and innovation

regimes. An overlapping generations version of an R&D-based growth model (á la Diamond, 1965)

and Jones (1995) is build to examine how improvement in quality of schooling impact technical

progress and long-run economic growth of an economy by influencing fertility and education de-

cisions at household level. We characterize two types of economies. First type of economy is an

innovation economy where technological improvements occur by innovating on local technology

frontier. The second type of economy is the imitation economy where technological progress occurs

by imitating existing foreign technologies. We find that the quality of schooling triggers a child

quantity-quality trade-off at the micro level when quality of schooling surpasses an endogenously
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determined threshold under both the regimes. When quality of schooling surpasses the threshold,

then parents invest in education of their children and bear lower number of children. However,

parents focus on maximizing fertility and do not educate their children when quality of schooling

is less than the threshold. This micro-level trade-off has repercussions at the macro level. This

micro-level trade-off has two opposing effects on aggregate human capital accumulation at macro

level. Higher investment in education of a child stimulates the accumulation of human capital which

fosters technical progress but the simultaneous decline in fertility rate reduces the total factor pro-

ductivity growth and economic growth by contracting the pool of available researchers. The first

effect prevails over latter only when quality of schooling is higher than the threshold. Accordingly,

the economy is on a self-sustaining growth path propeled by higher human capital accumulation

in the long-run when quality of schooling is higher than the threshold. When quality of schooling

is less than the threshold, then parents do not educate their children and focus on maximizing

fertility. In such a scenario, higher fertility rate leads to higher population growth which propels

economic growth rate under both innovation and imitation regimes.

Further, the comparative dynamics analysis reveal that when quality of schooling exceeds the

threshold, the long-run rate of technical progress and economic growth are increasing in quality

of schooling and returns to education due to higher rate of human capital accumulation under

both the regimes of technological improvement. Additionally, growth rate of per capita income is

unambiguously increasing in quality of schooling and returns to education under both the technology

regimes. When quality of schooling is less than the threshold, the long-run rate of technical progress

and economic growth are increasing in quality of schooling and returns to education due to higher

rate of population growth under both the regimes of technological improvement. Besides population

growth, higher intergenerational human capital spillovers are another factor that propels economic

growth when returns to education increase. Under the innovation regime, the growth rate of per

capita income is unaffected by quality of schooling whereas it is increasing in returns to education

when quality of schooling is less than the threshold. Under imitation regime, growth rate of per

capita income is unambiguously decreasing in quality of schooling and returns to education.

38



A Solution to Household’s Optimization Exercise

The utility function is described as follows:

Maximize

ut = log c1,t + β1 log c2,t+1 + β2 log(ht+1nt)

subject to

wtht(1− τnt) = c1,t + st + et(wtht)nt

c2,t+1 = (1 + rt+1)st

ht+1 = (µ+ θet)
εht, ε < 1

After substituting for c2,t+1 and ht+1, the langragean for this problem is formulated as :

L = log c1,t + β1 log[(1 + rt+1)st] + β2 log nt + β2ε log(µ+ θet) + β2ε log ht

+ψ[wtht(1− τnt)− c1,t − st − etnt(wtht)]

The choice variables are c1,t, st,et and nt.The first-order conditions are:

∂L

∂c1,t
= 0⇔ 1

c1,t
− ψ = 0⇔ c1,t =

1

ψ
. (85)

∂L

∂st
= 0⇔ β1

st
− ψ = 0⇔ st =

β1

ψ
. (86)

∂L

∂nt
= 0⇔ β2

nt
− ψτwtht − ψetwtht = 0⇔ β2

nt
= ψ[τ + et]wtht ⇔ nt =

β2

ψ[τ + et]wtht
. (87)

∂L

∂et
= 0⇔ β2εθ

µ+ θet
− ψntwtht = 0⇔ nt =

β2εθ

ψ[µ+ θet]wtht
. (88)

From eqs. (87) and (88), the l.h.s can be equated to yield:

µ+ θet = εθ[τ + et]⇔ µ− εθτ = etθ[ε− 1]

et =
µ− εθτ
θ(ε− 1)

=
εθτ − µ
θ(1− ε)
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Hence, we have:

et =


0, if θ ≤ µ

τε ;

τθε− µ
θ(1− ε) , otherwise.

(89)

Next, we know that the budget constraint is given by:

wtht(1− τnt) = c1,t + st + et(wtht)nt.

From eq. (87), etnt(wtht) can be expressed as:

etnt(wtht) =
β2

ψ
− τntwtht. (90)

Substituting from eqs. (85), (86) and (90), the budget constraint can be expressed as:

wtht − τntwtht =
1

ψ
+
β1

ψ
+
β2

ψ
− τntwtht

which on simplifying leads to:

ψ =
1 + β1 + β2

wtht
(91)

whose substitution into eqs. (85) and (86) yields:

c1,t =
wtht

1 + β1 + β2
; (92)

st =
β1wtht

1 + β1 + β2
, (93)

Substituting for et from eq. (89) and for ψ from eq. (91) in eq. (87), yields:

nt =


β2εθ

(1 + β1 + β2)µ
, if θ ≤ µ

τε ;

β2θ(1− ε)
(1 + β1 + β2)(τθ − µ)

, otherwise.

(94)

This completes the solution to the utility maximization exercise of households.

B Derivation of Eq. (36)

As specified in eq. (35), the research arbitrage condition is given by:

rt =
πt

pAt
+

[
pAt+1 − pAt

pAt

]
.
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We know from Proposition 3.1 that rt is constant along balanced growth path. This implies l.h.s

of above equation is constant. For r.h.s to be constant, following condition should hold true:

πt+1

πt
=
pAt+1

pAt

From eq. (21), we have:

πt = α(1− α)
Yt
At
.

This implies that:

πt+1

πt
=

Yt+1

Yt
At+1

At

. (95)

From eq. (20), we observe that:

1 + gY,t ≡
Yt+1

Yt
=
Kt+1

Kt

αAt+1

At

1−α
.

Inserting in eq. (95), we get that:

πt+1

πt
=


Kt+1

Kt

At+1

At


α

≡
[

1 + gK,t
1 + gA,t

]α
. (96)

Thus, eq. (35) will hold true if

πt+1

πt
=
pAt+1

pAt
=

[
1 + gK,t
1 + gA,t

]α
.

Inserting in eq. (35) and solving for pAt , we get that:

pAt =
πt

1 + rt −
[

(1 + gK,t)
(1 + gA,t)

]α .

C Derivation of Eq. (50)

When patents are infinitely-lived, we know from eq. (48) that:

1 + gK,t ≡
Kt+1

Kt
=

[
Kt

Kt−1

]α [ At
At−1

]1−α [ gA,t
gA,t−1

]1 + rt−1 −
[

(1+gK,t−1)
(1+gA,t−1)

]α
1 + rt −

[
(1+gK,t)
(1+gA,t)

]α
 .
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Using that at steady state,
Kt+1

Kt
=

Kt

Kt−1
and gA,t = gA,t−1, we obtain:

1 + gK,t ≡
Kt+1

Kt
=
At+1

At

1 + rt−1 −
[

(1+gK,t−1)
(1+gA,t−1)

]α
1 + rt −

[
(1+gK,t)
(1+gA,t)

]α


1
1−α

.

Along BGP, l.h.s is constant. R.h.s is constant if

1 + rt−1 −
[

(1 + gK,t−1)

(1 + gA,t−1)

]α
= 1 + rt −

[
(1 + gK,t)

(1 + gA,t)

]α
.

This is true if gK,t = gA,t, which in turn, implies that:

(1 + gK,t−1)

(1 + gA,t−1)
=

(1 + gK,t)

(1 + gA,t)
= 1,

which yields:

rt−1 = rt.

Thus, the condition for balanced growth path is

gK = gA. (97)

Similarly, it is known from eq. (49) that when patents last for one period,

1 + gK,t ≡
Kt+1

Kt
=

[
Kt

Kt−1

]α [ At
At−1

]1−α [ gA,t
gA,t−1

]
. (98)

Using that at steady state,
Kt+1

Kt
=

Kt

Kt−1
and gA,t = gA,t−1, we obtain

gK = gA. (99)

Thus, it can be deduced from eqs. (97) and (99) that both the cases of infinitely-lived and one-

period patents yield the same steady condition, that is,

gK = gA.
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D Derivations which prove that λ + φ < 1 is a neces-

sary condition for the steady state under the two

technology regimes

We first consider the case when the value of λ or φ falls such that λ + φ < 1. When patents are

one-period lived, we know from eq. (39) that the wage rate for both innovation and imitation

economies is given by:

wt = α(1− α)
Yt
Ht
gA,t,

where gA,t =
At+1 −At

At
. Further, we know from eqs. (58) and (57) that the BGP is given by:

Imitation regime:

gK = gY = gA = [(1 + gH)]
λ

2−φ (1 + gĀ)
1

2−φ − 1;

Innovation regime:

gK = gY = gA = [(1 + gH)]
λ

1−φ − 1.

Since λ + φ < 1 implies that
λ

1− φ
< 1 , it can be deduced that gY < gH , that is, the aggregate

output will grow at a lower rate as compared to aggregate human capital under both the technology

regimes. Resultantly, it can be inferred that the wage rate will fall over time for the case of one-

period patents.

Similarly, when patents are infinitely-lived, we know from eq. (37) that the wage rate under

both the technology regimes can be expressed as:

wt =
α(1− α)

1 + rt −
[

(1 + gK,t)
(1 + gA,t)

]α YtHt
gA,t,

where gK,t =
Kt+1 −Kt

Kt
and gA,t =

At+1 −At
At

. It is known that gY = gK = gA as the economy is

initially on the BGP. This implies that rt given by eq. (23) as:

rt = α2

[
Yt
Kt

]
,
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is constant. Thus, it can be deduced that wage rate will decline over time when patents are

infinitely-lived. Now, from eq. (5), we have:

c1,t =
wtht

1 + β1 + β2
;

st =
β1wtht

1 + β1 + β2
.

Thus, it can be inferred that per capita consumption and savings rate in absolute terms fall as the

wage rate falls over time under both the technology regimes.

Alternatively, if the the value of λ or φ rises such that λ+φ > 1 along the BGP, then it can be

observed from eqs. (58) and (57) that:

gY > gH ,

as
λ

1− φ
> 1 when λ+ φ > 1. Thus, similar to the case when λ+ φ < 1 , it follows from eqs. (37)

and (39) that the wage rate will rise over time for both the cases of infinitely-lived and one-period

lived patents. This, in turn, implies that per capita consumption and savings rate in absolute terms

rise as the wage rate rises over time.

E Derivations of Eqs. (71) and (72)

We know that (1 + gH) = (1 + gh).n. Differentiating both the sides w.r.t θ yields:

∂gH
∂θ

= (1 + gh)
∂n

∂θ
+ n

∂gh
∂θ

. (100)

When θ >
µ
τε , we know from Lemma 1 that:

∂nt
∂θ

= − µβ2(1− ε)
(1 + β1 + β2)(τθ − µ)2

,

and it is given (1 + gh) =

[
ε(τθ − µ)

(1− ε)

]ε
from eq 9. Differentiating gh w.r.t θ, we get that:

∂gh
∂θ

=

[
ε(τθ − ε)

1− ε

]ε
.

ετ

τθ − µ
=

(1 + gh)ετ

τθ − µ
. (101)

Substituting this into eq. (100), we get that:

∂gH
∂θ

= (1 + gH)
−µβ2(1− ε)

(1 + β1 + β2)(τθ − µ)2
+ (1 + gh)

ετ

τθ − µ
∗ n,
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Substituting for n from eq. (3.8),

= (1 + gh)

[
ετβ2θ(1− ε)

(1 + β1 + β2)(τθ − µ)2
− µβ2(1− ε)

(1 + β1 + β2)(τθ − µ)2

]
= (1 + gh)[ετθ − µ]

β2(1− ε)
(1 + β1 + β2)(τθ − µ)2

.

Alternatively, when θ ≤ µ
τε , we know from Lemma 1 that:

∂nt
∂θ

=
β2ε

(1 + β1 + β2)µ
,

and it is given (1 + gh) = µε from eq. (9). Differentiating gh w.r.t θ yields:

∂gh
∂θ

= 0. (102)

Substituting this into eq. (100), we get that:

∂gH
∂θ

= (1 + gH)
β2ε

(1 + β1 + β2)µ
=

β2ε

(1 + β1 + β2)µ1−ε

This completes derivation of eqs. (71) and (72).

F Derivations of Eqs. (75), (76), (77) and (78)

The per capita income is yt = Yt
Lt

. The growth rate of per capita income can be expressed as:

(1 + gy) =
(1 + gY )

n
. (103)

Under innovation regime, substituting for (1 + gY ) from eq. (67) and simplifying, we get:

(1 + gy) = (1 + gh). (104)

Taking log on both sides, we get that:

log(1 + gy) = log(1 + gh). (105)

Differentiating w.r.t θ yields:

1

1 + gy

∂gy
∂θ

=
1

(1 + gh)

∂gh
∂θ

, (106)
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Substituting for
∂gh
∂θ

from eq. (101) when θ >
µ
τε , we derive that:

∂gy
∂θ

= (1 + gy)
ετ

τθ − µ
. (107)

We, next consider the case where θ ≤ µ
τε .

Substituting for
∂gh
∂θ

from eq. (102), we derive that:

∂gy
∂θ

= 0. (108)

Similarly, we derive the expression for
∂gy
∂θ

under imitation regime.

Substituting for (1 + gY ) from eq. (57) in eq. (103), yields:

(1 + gy) = (1 + gĀ)
1

2−φ (1 + gh)
λ

2−φn
λ+φ−2
2−φ . (109)

It is known from Proposition 3.1 that λ+ φ = 1 along the steady state. Thus, we get:

(1 + gy) = (1 + gĀ)
1

2−φ (1 + gh)
λ

2−φn
−1
2−φ . (110)

Taking log on both sides,

log(1 + gy) =
1

(2− φ)
log(1 + gĀ) +

λ

(2− φ)
log(1 + gh)− 1

2− φ
logn, (111)

Differentiating w.r.t θ yields:

1

1 + gy

∂gy
∂θ

=
λ

2− φ(1 + gh)

∂gh
∂θ
− 1

2− φ(n)

∂n

∂θ
, (112)

When θ >
µ
τε , substituting for n from eq. (8),

∂n

∂θ
from Lemma 1 and

∂gh
∂θ

from eq. (101), we

derive that:

∂gy
∂θ

=
(1 + gy)

2− φ

[
λετ

τθ − µ
+

µ

θ(τθ − µ)

]
. (113)

Similarly, when θ ≤ µ
τε , substituting for n from eq. (8),

∂gh
∂θ

from eq. (102) and
∂n

∂θ
from Lemma

1 in eq. (112) yields:

∂gy
∂θ

=

[
−(1 + gy)

θ(2− φ)

]
. (114)

This completes derivations of eqs. (75), (76), (77) and (78).
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G Derivations of Eqs. (79) and (80)

We know that:

(1 + gH) = (1 + gh).n (115)

Differentiating both the sides w.r.t ε, we get that:

∂gH
∂ε

= (1 + gh)
∂n

∂ε
+ n

∂gh
.
∂ε (116)

When θ >
µ
τε , we know from the interior solution of eq. (9) that:

1 + gh =

[
ε(τθ − µ)

(1− ε)

]ε
. (117)

Taking log on both sides,

log(1 + gh) = εlogε+ εlog(τθ − µ)− εlog(1− ε), (118)

Differentiating w.r.t ε, we get the following expression:

1

1 + gh

∂gh
∂ε

= 1 + logε+ log(τθ − µ) +
ε

1− ε
− log(1− ε), (119)

which on simplification reduces to:

∂gh
∂ε

= (1 + gh)

[
log

1

(1− ε)
+
ε(τθ − µ)

1− ε

]
. (120)

Also, from Lemma 2, we have ∂nt
∂ε

=
−β2θ

(1 + β1 + β2)(τθ − µ)
. Substituting for

∂n

∂ε
from Lemma 2

and
∂gh
∂ε

from eq. (120) into eq. (116), we derive that:

∂gH
∂ε

=
−β2θ(1 + gh)

(1 + β1 + β2)(τθ − µ)
+ (1 + gh)n

[
1

(1− ε)
+ log

ε(τθ − µ)

1− ε

]
(121)

Substituting for
β2θ

(1 + β1 + β2)(τθ − µ)
from eq. (8), yields:

= (1 + gh)

[
n

[
1

(1− ε)
+ log

ε(τθ − µ)

1− ε

]
− n

1− ε

]
(122)

= (1 + gH)log

[
ε(τθ − µ)

1− ε

]
. (123)
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We next derive the expression for
∂gH
∂ε

when θ ≤ µ
τε .

When θ ≤ µ
τε , it is known from eq. (9) that:

(1 + gh) = µε. (124)

Taking log on both sides,

log(1 + gh) = εlogµ, (125)

Differentiating gh w.r.t ε yields:

∂gh
∂ε

= (1 + gh)logµ. (126)

Further, we derive know from Lemma 2 that
∂nt
∂ε

=
β2θ

(1 + β1 + β2)µ
. Substituting for

∂n

∂ε
and ∂gh

∂ε

from eq. (126) into eq. (116), we deduce that:

∂gH
∂ε

=
β2θ(1 + gh)

(1 + β1 + β2)µ
+ (1 + gh)nlogµ. (127)

Substituting for
β2θ

(1 + β1 + β2)µ)
from eq. (8) when θ ≤ µ

τε , we derive that:

= (1 + gH)

[
1

ε
+ logµ

]
. (128)

This completes the derivations of eqs. (79) and (80).

H Derivations of Eqs. (81), (82), (83) and (84)

We first, consider the innovation regime when θ >
µ
τε . It is known from eq. (104) that the growth

rate of per capita income is given by:

(1 + gy) = (1 + gh). (129)

Taking log on both sides, we get,

log(1 + gy) = log(1 + gh). (130)

Differentiating eq. (130) w.r.t ε, we have,

1

1 + gy

∂gy
∂ε

=
1

(1 + gh)

∂gh
∂ε

, (131)
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Substituting for 1
1+gh

∂gh
∂ε

from eq. (120), we get that:

∂gy
∂ε

= (1 + gy)

[
1

1− ε
+ log

ε(τθ − µ)

(1− ε)

]
. (132)

We next, consider the case where θ ≤ µ
τε .

Substituting for 1
1+gh

∂gh
∂ε

from eq. (126) in eq. (131), we get:

∂gy
∂ε

= logµ(1 + gy) (133)

Similarly, we derive the expression for
∂gy
∂ε

under imitation regime.

We know from eq. (111) that:

log(1 + gy) =
1

(2− φ)
log(1 + gĀ) +

λ

(2− φ)
log(1 + gh)− 1

2− φ
logn (134)

Differentiating w.r.t ε yields:

1

1 + gy

∂gy
∂ε

=
λ

2− φ(1 + gh)

∂gh
∂ε
− 1

2− φ(n)

∂n

∂ε
. (135)

When θ >
µ
τε , substituting for n from eq. (8),

∂n

∂ε
from Lemma 2 and

∂gh
∂ε

from eq. (120), we

derive that:

∂gy
∂ε

=
λ(1 + gy)

2− φ

[
1

1− ε
+ log

ε(τθ − µ)

(1− ε

]
+

(1 + gy)

(2− φ)(1− ε)
. (136)

Alternatively, when θ ≤ µ
τε , substituting for n from eq. (8),

∂gh
∂ε

from eq. (126) and
∂n

∂ε
from

Lemma 2 in eq. (135) yields:

∂gy
∂ε

=
λ(1 + gy)logµ

ε(2− φ)
− (1 + gy)

ε(2− φ)
. (137)

This completes the derivations of eqs. (81), (82), (83) and (84).
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